

FPW91-SL Ultra-Low Refrigerated-Heating Circulator

Ultra-Low Refrigerated Circulators with SL circulator impress with their high heating, cooling and pump capacities for external temperature control applications.

Your advantages

- VFD COMFORT DISPLAY
- LCD DIALOG DISPLAY backlit for convenient interactive operation
- · Keypad for setpoints, warning/safety values and menu functions
- · ICC (Intelligent Cascade Control), self-optimizing temperature control
- TCF Temperature Control Features to optimize the control behavior
- ATC3 3-Point-Calibration
- Pt100 External sensor connection for measurement and control
- SMART PUMP, electronically adjustable pump stages
- · Adjustable high temperature cut-out, visible via display
- RS232/RS485 interface for online communication
- Integrated programmer for 6 x 60 program steps
- · Connections for solenoid valve and HSP booster pump
- Proportional cooling control

Technical data

Available voltage versions			Bath				
Order No.	9 352 793N		Bath cover	integrated			
Available voltage versions:							
9 352 793N.07	352 793N.07 400V/3PNPE/50Hz (Plug 63A CEE)						
9 352 793N.16	230V/3PPE/60Hz (Without Plug)						
Cooling			Other				
Cooling of compressor		2-stage Water	Classification	Classification III (FL)			
Cooling water pressure max. bar		6	IP Code	IP 21			
Cooling water difference pressure bar		3.5 6					
Cooling water consumption l/min		7.5					
Electronics			Dimensions and volumes				
Digital interface		Profibus optional	Weight kg	303			
External pt100 sensor connection		integrated	Cooling Water Connection in	G¾			
Integrated programmer		6x60 steps	Dimensions cm (W \times L \times H)	85 x 76 x 116			
Temperature control		ICC	Filling volume I	22			
Absolute temperature calibration		3 Point Calibration	Pump connections	M16x1 male			
Temperature display		VFD					
Temperature setting		Keypad					
Temperature values							
Setting the resolution of the temperature display °C		0.01					
Temperature display resolution °C		0.01					

Performance values

400V/3PNPE/50Hz (Plug 63A CEE)

400V/3PNPE/50Hz								
g capa	acity k\		3					
Cooling capacity (Ethanol)								
20	0	-20	-40	-60	-80			
4.5	4.1	3.7	3.1	2	0.75			
Viscosity max. cST 70								
erant			R404A					
volum	e g		900					
Warm	ing Po	3922						
n dioxi	de equ		3.53					
erant			R23					
volum	e g		1000					
Warm	ing Po		14800					
n dioxi	de equ		14.8					
capaci	ity flow		22 26					
capaci	ity flow		0.4 0.7					
um su	ction b		0.2 0.4					
	g capa g capa 20 4.5 ity ma rant volum Warm d dioxi capaci capaci	g capacity kV g capacity (E 20 0 4.5 4.1 ity max. cST rrant volume g Warming Po a dioxide equ rrant volume g Warming Po a dioxide equ capacity flow	g capacity kW g capacity (Ethanol 20 0 -20 4.5 4.1 3.7 ity max. cST wolume g Warming Potential o dioxide equivalent rrant volume g Warming Potential o dioxide equivalent rrant volume g	g capacity kW 2 0 0 -20 -40 4.5 4.1 3.7 3.1 ity max. cST ity max. cST wolume g Warming Potential for R4 o dioxide equivalent t wolume g Warming Potential for R2 o dioxide sequivalent t ity max. s s s s s s s s s s s s s s s s s s s	g capacity (kitrand) 20 0 -20 -40 -60 4.5 4.1 3.7 3.1 2 itrand 3.7 3.1 2 itrand 3.7 3.1 2 itrand 5 4.1 3.7 3.1 2 itrand 5 5 5 5 5 volume g 5 5 5 5 5 warming Potential for RV 5 5 5 5 warming Potential for R2 5 5 5 5 5 warming Potential for R2 5 <t< td=""><td>g capacity kW 20 0 -20 -40 -60 -80 4.5 4.1 3.7 3.1 2 0.75 ity max. cST 3.1 2 0.75 ity max. cST </td></t<>	g capacity kW 20 0 -20 -40 -60 -80 4.5 4.1 3.7 3.1 2 0.75 ity max. cST 3.1 2 0.75 ity max. cST ity max. csT		

230V/3PPE/60Hz (Without Plug)

230V/3PPE/60Hz								
Heatir	ng capa	acity k\		3				
Cooling capacity (Ethanol)								
°C	20	0	-20	-40	-60	-80		
kW	4.5	4.1	3.7	3.1	2	0.75		
Viscosity max. cST 70								
Refrig	erant			R404A				
Filling	volum	e g		900				
Globa	l Warm	ing Po		3922				
Carbon dioxide equivalent t							3.53	
Refrig	erant			R23				
Filling	volum	e g		1000				
Globa	l Warm	ing Po		14800				
Carbo	n dioxi	de equ		14.8				
Pump	capaci	ity flow		22 26				
Pump	capaci	ity flow		0.4 0.7				
Maxim	num su	iction b		0.2 0.4				

Benefits

JULABO. Quality. Highest standards of quality for a long product life.

Green technology.

Development consistently applied environmentally friendly materials and technologies.

Satisfied customers.

11 subsidiaries and more than 100 partners worldwide guarantee fast and qualified JULABO support.

Quick start.

Individual JULABO consultation and comprehensive manuals at your disposal.

Intelligent temperature control. Intelligent cascade control - automatic and

self-optimizing adaptation of the PID control parameters with external stability of +/- 0.05 °C.

Early warning system for high/low temperature limits

Maximum safety for applications, optical and audible alarm, convertible to automated cut-off function

Control from the external application External Pt100 sensor connection for precise measurement and control directly in the external application

ATC3. Calibration.

'Absolute Temperature Calibration' for compensating a physically caused temperature difference, 3-point calibration.

100 % Cooling capacity

'Active Cooling Control' for cooling available throughout the entire working temperature range, fast cool-down even at higher temperatures

Condensation and ice protection A heated cover plate prevents condensation or ice build-up in the bath

100% Checked.

100% testing. 100% quality. Each JULABO Circulator undergoes thorough quality testing before leaving the factory.

Services 24/7.

Around the clock availability. You can find suitable accessories, data sheets, manuals, case studies, and more at www.julabo.com.

Connection of additional equipment Stakei connections for solenoid valve, HSP booster pump and HST booster heater

Clever pump system Reliable and consistent pump capacity, electronically adjustable pump stages

For flammable bath fluid Classification III (FL) according to DIN 12876-1

Process. Under control. Full regulation of the dynamics control, access to all important control parameters for individual process optimization.

Energy saving cooling

Proportional cooling control for automatic adjustment of cooling power or temporary switch-off of compressor as needed to save up to 90 % energy in comparison to unregulated cooling machines